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Abstract 

This paper presents a direct traction boundary integral equation method (TBIEM) for 

three-dimensional crack problems. The TBIEM is based on the traction boundary 

integral equation (TBIE). The TBIE is collocated on both the external boundary and 

one of the crack surfaces. The displacements and tractions are used as unknowns on 

the external boundary and the relative crack opening displacements (CODs) are 

introduced as unknowns on the crack surface. In our implementation, all the surfaces 

of the considered structure are discretized into discontinuous elements to satisfy the 

continuity requirement for the existence of finite-part integrals, and special crack-front 

elements are constructed to capture the crack-tip behavior. To calculate the finite-part 

integrals, an adaptive singular integral technique is proposed. The stress intensity 

factors (SIFs) are computed through a modified COD extrapolation method. 

Numerical examples of SIFs computation are presented to demonstrate the accuracy 

and efficiency of our method. 

Keywords: traction boundary integral equation, discontinuous elements, singular 

integrals, cracks opening displacement, stress intensity factor. 

1. Introduction 

SIFs play an important role in characterizing fracture behavior in linear elastic 

fracture mechanics. Accurate evaluation of SIFs has challenged many numerical 

modeling techniques. The boundary element method (BEM) is an attractive method 

for the calculation of SIFs (Cruse, 1988; Aliabadi, 1997). However, the conventional 



 

BEM encounters considerable difficulties for crack problems because a singular 

system of equations is always obtained (Cruse, 1988; Aliabadi, 1997). To circumvent 

the difficulties, various methods (Pan, 1997) within the scope of BEM including the 

special Green’s method (Telles, 1995), the multi-domain techniques (Blandford et al., 

1981), the displacement discontinuity or dislocation method (Crouch, 1983; Pan, 

1991), the Galerkin symmetric method (Sirtori et al., 1992) and the dual boundary 

integral equations method (DBIE) (Mi and Aliabadi 1992; Chen and Chen, 1995; 

Cisilino and Aliabadi, 1999; Wilde, 1999; Pan, 2000; Wang and Yao, 2006) have been 

proposed. Among the above methods, DBIEM is a promising method (Pan, 1997; Pan, 

2000). However, the DBIEM formulation is based on a pair of boundary integral 

equations, namely, the displacement and traction boundary integral equations. In the 

numerical implementation of DBIEM, four types of singular integrals are involved in 

the two boundary integral equations. Special singular integrals techniques are required 

for the singular integrals. In the standard DBIEM, the weakly singular integrals are 

computed by variable transformations (Lachat and Watson, 1976). And the strongly 

singular integrals which are involved in the displacement integral equation are 

calculated directly by the rigid-body motion method. While the strongly singular and 

hypersingular integrals associated with the traction integral equation are evaluated by 

the singular subtraction technique (Aliabadi et al, 1985; Mi and Aliabadi, 1992; 

Guiggiani, 1998). The various methods for different type singular integrals can not be 

unified into a uniform formation. It is not easy for program code writing. So it is time 

to develop a new method which can overcome the trouble and which also inherits the 

advantage of the DBIEM. 

In this paper, a direct TBIEM for three-dimensional crack problems in infinite and 

finite domains is proposed. The TBIEM formulation is based on the traction boundary 

integral equation (TBIE). The TBIE is collocated on both the external boundary and 

one of the crack surfaces. The displacements and tractions are used as unknown 

variables on the external boundary and the relative crack opening displacements 

(CODs) are introduced as unknowns on the crack surfaces. Only TBIE is required in 

this formulation and this formulation has the advantage resulting in a smaller system 



 

of algebraic equations since only one of the crack surfaces needs to be discretized. In 

our implementation, in order to satisfy the continuity requirement for the existence of 

finite-part integrals, all the surfaces of the considered structure are discretized into 

9-node discontinuous quadrilateral elements. To calculate the finite-part integrals 

more accurately, an adaptive element subdivision technique is adopted to improve the 

conventional singular subtraction technique. In the adaptive subdivision technique, the 

singular element is subdivided into several triangular and quadrangular patches. The 

integrals over each quadrangular patch are treated as nearly singular integrals, while 

the integrals over each triangular patch are computed by the singular subtraction 

technique based on a Taylor series expansion of kernel function, shape functions, and 

the transformation Jacobian. Special crack-front elements considering the position of 

the crack fronts are employed. The special crack-front elements successfully model 

the distribution of displacements in the vicinity of the crack tips. With the help of the 

adaptive singular integral technique and specially constructed elements, the SIFs 

along the crack-front are computed through a modified COD extrapolation method. 

The outline of this paper is as follows. In section 2, we introduce the TBIEM 

formulation. Section 3 introduces the modeling strategy. In section 4, the treatment of 

the singular integrals is described. The method for the calculation of SIFs is given in 

Section 5. Numerical examples are shown in Section 6. The paper ends with 

conclusions in Section 7. 

2. The traction boundary integral equation method formulation 
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Fig. 1. A finite body with a crack 

As shown in Fig. 1, a finite body with a crack is considered.   is the external 

boundary. +  is the upper crack surface, while   is the lower crack surface. The 

traction at y  can be represented by 

* *1 ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )
2 j i ijk k i ijk kt y n y U x y t x dS x n y T x y u x dS x

      
     (1) 

where 1 2 3( , , )y y y y is the source point and 1 2 3( , , )x x x x  is the field point. 

* ( , )ijkU x y  and * ( , )ijkT x y  contain several derivatives of the Kelvin fundamental 

solutions, together with the elastic constants. Expressions for * ( , )ijkU x y  and 

* ( , )ijkT x y  are: 
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where r is the distance between x and y; G,   and ij  represent the shear modulus, 

Poisson’s ratio and the Kronecker delta, respectively; n denotes the unit outward 

normal vector at the point x on the boundary. 1 2 3( ) ( ( ), ( ), ( ))n y n y n y n y  denotes the 

unit outward normal vector at the point y, and ,i ir r x   , , j jr r x   . 

From the properties of Kelvin’s fundamental solutions and the traction equilibrium is 

assumed on the crack surfaces, we have  

( ) ( )k kt x t x   , * *( , ) ( , )ijk ijkU x y U x y  , * *( , ) ( , )ijk ijkT x y T x y       (4) 

where +x  , x  , ( )kt x  is the traction on the upper crack surface, while 

( )kt x  is the traction on the lower crack surface. 

We assume y is on the external boundary, using Eq. (4), the following equations can 

be obtained: 
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where ( )ku x  is the displacement on the upper crack surface, while ( )ku x  is the 

displacement on the lower crack surface. ( )= ( ) ( )k k ku x u x u x   . 

Substituting Eq. (5) and Eq. (6) into Eq. (1), Eq. (1) can be written as: 
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*
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We assume y is on the upper crack surfaces, Eq. (1) should be written as: 
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Using Eq. (4), Eq. (8) can be simplified to: 
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Eqs. (7) and (9) constitute the new expressions for the TBIEM. It should be noted that 

in Eqs. (7) and (9), only the coefficients of ( )jt y  are different. So the singular 

integrals can be computed through a uniform singular subtraction method. Moreover, 

this new formulation has the advantage of resulting in a smaller system of algebraic 

equations since only one of the crack surfaces needs to be discretized. When this 

formulation is used for solutions of crack problems in infinite domains, Eq. (9) can be 

written as: 

*( )+ ( ) ( , ) ( ) ( )=0j i ijk kt y n y T x y u x dS x


  


            (10) 

3. Modeling strategy 

The use of the TBIE imposes certain restrictions on the choice of element to satisfy 

the continuity requirement for the existence of finite-part integrals (Mi and Aliabadi, 



 

1992; Mi and Aliabadi, 1994).. Thus in our method, 9-node discontinuous 

quadrilateral Lagrangian elements (9DQLE) are employed for the uncracked 

boundary and crack surfaces while special crack-tip elements are used at the crack 

front. The 9-node discontinuous quadrilateral Lagrangian element is shown in Fig. 

2(a). And the special crack-tip elements are shown in Fig. 2(b) and Fig. 2(c). 

  

  

 
Fig. 2. Three types of elements  

(a) 9-node discontinuous element (b) special crack-tip elements with one edge lying in 

the crack front (c) special crack-tip elements with two edges lying in the crack front 

For elements of the three types, geometry and functionality are interpolated using 



 

different sets of shape functions. Shape functions i
geo used for the geometry are as 

follows: 

0 1 (1 )(1 )
4geo                                      

   1 1 (1 )(1 )
4geo                                      

2 1 (1 )(1 )
4geo                                      

3 1 (1 )(1 )
4geo                                      

4 1 (1 )(1 )(1 )
2geo                                   

5 1 (1 )(1 )(1 )
2geo                                   

6 1 (1 )(1 )(1 )
2geo                                   

     7 1 (1 )(1 )(1 )
2geo                                   

  8 (1 )(1 )(1 )(1 )geo                              (11) 

The functional shape functions i
coll  for 9DQLE in Fig. 2(a) are as follows: 
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6
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                           

7
4

1 ( )( )( )
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

                           

8
4

1 ( )( )( )( )coll        


                     (12) 

The shape functions i
coll  for special crack tip elements are different from those of 

9DQLE. Eight-node discontinuous elements with special shape functions have been 



 

presented in Ref. (Mi and Aliabadi, 1994). In this work, 9-node discontinuous 

quadrilateral Lagrangian elements with special shape functions are proposed. 

Moreover, special crack tip elements with two edges lying in the crack fronts are also 

presented. And we will give a detailed deduction for the two types of special shape 

functions. 

Let us assume that the crack front lies along the local coordinate 1   , as shown in 

Fig. 2(b). Ref. (Mi and Aliabadi, 1994) indicated that the distance 

( , ) ( , 1)r x x      is proportion to 1   in local coordinate system. The COD 

( u ) over the element which is adjacent to the crack front can be written as: 

2
2 1 0( , ) ( , ) ( ) ( )i iu u M I r I r I                            (13) 

where ( , )iM    are discontinuous quadratic shape functions. To accurately model 

the COD as indicated in Ref. (Mi and Aliabadi, 1994), we should modified Eq. (13) 

into: 

2 1 0

2 1 0

( , ) ( ) ( ) ( )

( )(1 ) ( ) (1 ) ( )

u L r L r L

L L L

    

    

   

    
                  (14) 

The shape functions should be of the form: 

2 2
1 2 5 3 4 7

2
6 8 9

1 1 1

(1 ) (1 ) (1 )

i i i i i i i

i i i

M a a a a a a

a a a
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        
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        (15) 

where i=0,…8. 

The shape functions in (15) must satisfy the conditions: 

( , )i
i j ijM     i=0,…8.                          (16) 

where ij  is the kronecker delta, and ( , )i i   are the functional coordinates for the 

discontinuous element in the ( , )   coordinate system, as illustrated in Fig. 2(a). 

Using Eq. (15), a set of 9 9  linear system of equations is obtained. Solving this 

system of equations by maple can yield the coefficients i
ja . With 0.75  , the shape 

functions for the crack-tip element in Fig. 2(b) are obtained (APPENDIX A). 

Let us assume that the crack fronts lie along the local coordinates 1    and 



 

1   , as shown in Fig. 2(c). Using the same procedure, the shape functions should 

be of the form: 

1 2 5 3 4 7

6 8 9

1 1 1 1 1 1

(1 )(1 ) (1 )(1 ) (1 )(1 )

i i i i i i i

i i i

M a a a a a a
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           

        
     (17) 

where i=0,…,8. 

Using Eq. (17), a set of 9 9  linear system of equations is obtained. Solving this 

system of equations by maple will yield the coefficients i
ja . With 0.75  , the 

shape function for the crack-tip element Fig. 2(c) are obtained (APPENDIX B). 
With the shape functions above, Eq. (7) and Eq. (9) can be written in a discretized 
form as: 
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where ne1 denotes the total number of elements on the uncracked surfaces and ne2 

represents the total number of elements on the upper crack surfaces. x  represents 

the nodes of each element, and x  is the inner field points of each element. ( , )J    

is the Jacobian. For 9DQLE, ( , ) CollN 
    while for the crack-tip elements, 

( , )N M 
    . 

when y passes through all the collocation nodes, Eq. (18) and Eq. (19) give a system 

of linear equations, which can be expressed in a matrix form as: 
Hu Gt                             (20) 



 

where matrix H  contains integrals involving *
ijkT , and matrix G  contains integrals 

involving *
ijkU . Vectors u  and t  consist of all nodal displacements and traction 

components on the boundary. Rearranging Eq. (20) according to the boundary 

conditions results in 

 Ax By f                           (21) 

where x  is the vector containing the boundary unknowns iu , it  and iu , and y  is 

the vector for known components. 

4. Treatment of singular integrals 

Special attention needs to be paid for the singular integrals, which arise in the TBIE. 

In this section, firstly an element subdivision technique is introduced. Then the classic 

singular subtraction method (Mi and Aliabadi, 1992; Guiggiani, 1998) in combination 

with the element subdivision techniques is employed for the Cauchy and Hadamard 

finite part integrals. 

4.1 Element subdivision 

The element subdivision is indispensible for treating the singular integrals in 3D 

cases (Zhang, 2009). In this section, we subdivide an integration element in a suitable 

pattern considering both element shape and the position of the source point x in the 

element. Adaptive integration based on element subdivisions is employed just as a 

combination for the singular subtraction method (Mi and Aliabadi, 1992; Guiggiani, 

1998). 

Note that although the original quadrangle has a fine shape, the four sub-triangles 

may have poor shapes depending on the position of x (the source point) (see Fig. 3(a) 

and Fig. 3(b)).  



 

 

Fig. 3. Subdivisions of quadrilateral element depending on the position of the source 

point 

Obtaining triangles with high quality seems to be more difficult by direct subdivision 

for irregular initial elements as shown in Fig. 3(c) even when x is located in the center 

of the quadrilateral element. If the angle   between two lines intersected at x in each 

triangle is larger by a certain value 2 3  and even tends to   as in Fig. 3(a) – 3(b), 

numerical results will become less accurate.  

To solve the troubles described above, we have developed an adaptive subdivision 

for an arbitrary quadrilateral element. The original element is divided into several 

triangles and additional quadrangles, which is different from these as shown in Fig. 

3(a1)-(c1). The adaptive subdivision consists of three main steps are briefly described 

as follows: 

First, compute the distances in the real-world-coordinate system from x to each edge 

of the element and obtain the minimum distance d. 

Then, based on d, we construct a box defined in parametric system, but with square 

shape in the real-world-coordinate system as fine as possible, to well cover x. 

Finally, triangles are generated in the box and additional quadrangles are created 

outside the box in the element. 

Applying the strategy above, adaptive subdivisions for the elements in Fig. 3 with 

suitable patterns are shown in Fig. 3(a1)-(c1). For each triangle, the singular integrals 

are calculated by the singular subtraction method (Aliabadi et al, 1985; Mi and 
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Aliabadi, 1992; Guiggiani, 1998). However, for each quadrangle, nearly singular 

integrals will arise but not severe, which can be calculated by adaptive integration 

scheme based on the element subdivision technique discussed in Ref. (Zhang, 2009). 

4.2 Evaluation of Cauchy and Hadamard finite part integrals 

In our method, when the collocation point is located in the integration element, the 

element is treated as a singular element. The integrands over a singular element are 

highly singular and the integrals over the element are required to be treated as Cauchy 

or Hadamard finite part integrals. The technique which we employ in this study for 

evaluation of these integrals was developed by Guiggiani et. al. (Guiggiani 1998) who 

utilized a singularity subtraction technique pioneered by Aliabadi, Hall and 

Phemister(Aliabadi et al, 1985). In this technique, the singular part of the fundamental 

solution in the kernel is subtracted out and integrated analytically, or semi-analytically 

leaving the remaining integrand well behaved. This technique, which is based on 

Taylor series expansions of kernel, shape functions and the Jacobian of the 

transformation, has been applied to many problems. Aliabadi et. al. (Aliabadi et. al., 

1985) wrote the integral involving a product of kernel D, shape function and the 

Jacobian as: 
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            (22) 

where the approximate integrand denoted by * has the same singularity as the original 

integrand but of simpler form which can be integrated analytically or 

semi-analytically. In Eq. (22), the first integral on the right side is non-singular and 

can be integrated accurately by the standard numerical quadrature. Details of the 

singularity subtraction technique have been discussed in Refs. (Aliabadi et. al., 1985; 

Mi and Aliabadi, 1992; Guiggiani, 1998). 

It should be noted that in our work, firstly, the singular elements are subdivided into 



 

several triangle and quadrilateral patches. Then the singularity subtraction technique 

is employed for the singular integrals on triangle patches while adaptive integration 

scheme for nearly singular integrals is applied for the regular integrals on 

quadrilateral patches. 

5. Calculation of stress intensity factors 

In our work, whenever the elasticity solution is available, the CODs which are 

obtained through our method can be directly used to compute the stress intensity 

factors. We consider a local coordinate system centered at a point O along the crack 

front with coordinate directions: t (the tangent unit vector of the front curve), b (the 

unit normal to the crack surface) and /  n b t b t  point into the body as shown in 

Fig. 4. 

 

Fig. 4. Crack front local coordinate system 

The stress intensity factors (Mi, 1996) can be expressed as follows: 
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where bu u   b , nu u   n , tu u   t ,   is the Poisson’s ratio and E is the 

Young's Modulus. 
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Due to the use of discontinuous elements, CODs obtained after boundary element 

analysis are at the collocation nodes inside the geometry on the edges of the element. 

As shown in Fig. 5, when one point formula is employed, stress intensity factors are 

evaluated by: 

 

Fig. 5. A crack front element  
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where the CODs Pu are evaluated at point P (such as P1, P2, P3) as shown in Fig. 5, 

P
bu , P

nu , P
tu are the projections of Pu on the coordinate directions of the local 

crack front coordinate system as shown in Fig. 4.  

In our work, a modified COD extrapolation technique is used to assess the stress 

intensity factors. We assume that points P1, P2, P3 and the crack front point P’ are on 

the same line as illustrated in Fig. 5. The distances between P1 and P’, P2 and P’, P3 

and P’ are denoted as 1Pr , 2Pr , and 3Pr , respectively. The stress intensity factor 

evaluated by the formula (24) from the relative CODs at points P1, P2, and P3 are 

symbolized as 1pK , 2pK , 3pK , respectively. In our work, the stress intensity factors 

corresponding to the point P’ can be expressed by a linear extrapolation of 2pK and 
3pK . 

A

Crack front  

 








B
C

cl 












  


'P

1P
2P

3P

2Pr

3Pr

1Pr

t

n

b

Geometrical point  Collocation point  



 

3 32 2'

3 2

p pp p
P

p p
r K r KK

r r





                       (25) 

6. Numerical examples  

Example 1: A penny shaped crack in an infinite solid under shear 

   

Fig. 6. A penny shaped crack in an infinite solid under shear (Tada et al, 2000) 

 

Fig. 7. Boundary element (BE) discretization of the crack model: 

(a) 32 elements (b) 48 elements (c) 68 elements 

As shown in Fig. 6, a penny shaped crack in an infinite solid under shear is considered. 

The radius (a) is 1 and the shear (q) is 1. The Young's Modulus (E) is 1 and the 

Poisson’s ratio (v) is 0.25. Three different meshes are employed in the example and 

the meshes are depicted in Fig. 7. Convergence of the SIFs is also studied while the 

number of elements ranges from about 32 to 68. The exact SIFs for this problem are 

given by Tada (Tada et al, 2000) as follows: 
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The convergence of three kinds of SIFs is shown in Fig. 8. In Fig. 8, it can be noted 

that the solutions of all the meshes are indistinguishable from the exact solutions. 

The exact solutions and the solutions of all the meshes are seen to overlap along the 

crack front. The largest error for the SIFs using our method is about 1 percent 

compared with exact solutions. High accuracy can be achieved by our method, even 

though the mesh (a) is coarse. 

 

 



 

 

Fig. 8. Normalized SIFs along the front of the penny shaped crack: (a) model I SIFs 

(b) model II SIFs (c) model III SIFs 

Example 2: A singular edge crack 

In this example, we concern a rectangular edge crack bar specimen of thickness t, 

width w and total height 2h, with a crack length a through the thickness as shown in 

Fig. 9. The ends of specimen are subjected to a uniform uniaxial tensile stress   in 

the y-direction, perpendicular to the crack. The BE mesh is shown in Fig. 10 and the 

normalized stress intensity factors, (i.e. /IK a  ) for t/a=2, w/a=3, h/a=1.75 or 

h/a=6 along the crack front are illustrated in Fig. 11 together with the results obtained 

by Raju & Newman (Raju and Newman, 1977) using the finite element method. The 

SIF at the center of the bar computed by our method is 2.8254 when h/a=6. This 

value is in good agreement with that in Ref. (Murakami, 2001) (In that paper, the SIF 

is 2.827). The difference between the two values is within 0.06 percent and in Ref. 

(Raju and Newman, 1977), the SIF is 2.776. When h/a=1.75, the SIF is 2.83575 by 

our method. The value obtained by our method is within 0.4 percent within that of 

Murakami’s method and the SIF is 2.787 in Ref. (Raju and Newman, 1977). It should 

be noted that compared with Raju and Newman’s method, the results for the stress 

intensity factor at the center of the bar obtained by our method are closer to the 

Murakami’s results. When z/w≈0.48, the value of our method is 2.641 for h/a=6 and 

the value of our method is 2.680 for h/a=1.75, while in Ref. (Raju and Newman, 



 

1977), the value is 2.441 for h/a=6 and 2.434 for h/a=1.75. The difference between 

the two values is about 8.2 percent for h/a=6 and 10.1 percent for h/a=1.75. In Raju 

and Newman’s method, the SIFs are nearly uniform over most of the thickness and are 

lower than the midplane value near the free surface (Raju and Newman, 1977). The 

same trends of SIFs can also be achieved by our method as shown in Fig.11. 

Furthermore, the results obtained by our method are compared with those of Mi and 

Aliabadi (Mi and Aliabadi, 1992). When z/w≈0.48, the value is about 2.7 for both 

h/a=1.75 and h/a=6. The results obtained by our method are closer to these of Mi and 

Aliabadi’s method. The largest error of the two cases is within 2.2 percent compared 

with Mi and Aliabadi’s method (Mi and Aliabadi, 1992). Moreover, results presented 

in Fig. 11 show that the KI variation along the crack front is in good agreement with 

the work of Mi and Aliabadi (Mi and Aliabadi, 1992). So the present results can be 

acceptable compared with the previous results. 

 

Fig. 9. Geometry model of the singular edge crack 
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Fig. 10. A singular edge crack model 

(a) BE discretization of the external boundary when h/a=1.75 

(b) BE discretization of the external boundary when h/a=6 

(c) BE discretization of the crack 

 

Fig. 11. Normalized SIFs along the front of the single edge crack 

Example 3: A semi-elliptical surface crack in a finite-thickness plate 

( )a ( )b ( )c



 

     

Fig. 12. A semi-elliptical surface crack in a finite-thickness plate 

As shown in Fig. 12, a semi-elliptical plane crack is contained in mid-cross-section of 

a finite-thickness plate. The geometry of the crack and the plate are defined by: 

2 10h  , 2 10w  , 5t  , 2 2a  , 1b  . The material properties are: the Young's 

Modulus E=1 and the Poisson’s ratio v=0.3. The BE mesh for this problem is shown 

in Fig. 13 and Fig. 14. 108 discontinuous quadrilateral elements are used to discretize 

the plate while the crack surface is discretized with 16, 24 and 36 elements. The 

Model-I SIFs of the three meshes along the front of semi-elliptical surface crack are 

shown in Fig. 15 (the   is shown in Fig. 12). Note that the mesh (a) is too coarse, 

the SIF has a large difference compared with that of Newman and Raju’s method 

when 0 , whereas meshes (b) and (c) produce better results. Fig. 15 show that the 

results obtained by our method using mesh (c) are in very good agreement with those 

obtained by Newman and Raju (Raju and Newman, 1979) for the same problem using 

a finite element approach. In order to assess the accuracy of our method, the SIFs 

obtained by our method using the three meshes are also listed in Table 1, compared 

with Newman and Raju’s method (Raju and Newman, 1979). In Table 1, the results 

obtained by our method using mesh (c) are generally better, and the largest error is 

about 1.5 percent. 
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Fig. 13. BE discretization of semi-elliptical surface crack in a finite-thickness plate: 

BE discretization of the external boundary   

 

Fig. 14. BE discretization of the crack: 

(a) 16 elements (b) 24elements (c) 32 elements 

 

Fig. 15. Model-I SIFs along the front of semi-elliptical surface crack in a 

finite-thickness plate 

Table 1 Comparisons between our method and Newman and Raju’s method 

(c) (b) (a) 



 

2   
Newman and  

Raju’s method 

our method 

mesh (a) 

our method 

mesh (b) 

our method 

mesh (c) 

0.125 1.145 1.13401 1.12814 1.1280 

0.375 1.082 1.06362 1.06744 1.06823 

0.625 1.058 1.04118 1.04529 1.05028 

0.875 1.050 1.03423 1.03735 1.03827 

7. Conclusions 

This paper presented a direct TBIE formulation for three-dimensional crack problems 

in infinite and finite domains. This formulation was based on the TBIE. Only the 

TBIE was required in this formulation and this formulation had the advantage 

resulting in a smaller system of algebraic equation. In our method, all the surfaces of 

the considered structure are discretized into discontinuous quadrilateral quadratic 

elements, and two types of special crack-tip elements, which successfully captured the 

distribution of displacements in the vicinity of the crack tips, were introduced. An 

adaptive singular integral technique was developed to calculate the finite-part 

integrals over these elements. A modified COD extrapolation method was adopted for 

the computation of SIFs. Numerical examples of SIFs computation were given for 

both finite and infinite domains. The SIFs obtained by the present method were in 

very good agreement with previously published results. Results demonstrated the 

accuracy and efficiency of our method. 
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APPENDIX A 
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34.97167346 1 1 54.88801221 1 1 -150.0810313(1 )(1 )
20.07378195 (1 )(1 ) 10.03689071 (1 )(1 )

M    

       
     

   

       

     

 

7 -67.6957080-29.58750589 -30.39767274 170.0419981 1 1

32.12648266 1 1 34.97167356 1 1 -102.3462901(1 )(1 )
10.03689064 (1 )(1 ) 7.58717619 (1 )(1 )

M    

       
     

   

       

     

 

8 =142.5070281 62.86012379 62.86012350 -359.9110701 1 1

-69.94334743 1 1 -69.94334662 1 1 218.4040420(1 )(1 )
-20.07378115 (1 )(1 )-20.07378159 (1 )(1 )

M    

       
     

   

      

   

    


